Skip to main content

Practical Machine Learning by Example in Python

practical-machine-learning-python
Udemy Coupon - Practical Machine Learning by Example in Python, A Deep Dive into Building Machine Learning and Deep Learning models

Created by Madhu Siddalingaiah
English [Auto]

Students also bought
Complete Ethical Hacking & Cyber Security Masterclass Course
Complete PHP Course With Bootstrap3 CMS System & Admin Panel
Bootstrap Studio | Bootstrap 4 Design website without coding
The Complete Web Developer Masterclass: Beginner To Advanced
R Programming For Absolute Beginners
Learn German for Beginners:An Immersive Language Journey A1+

Preview this Course GET COUPON CODE

Requirements

Basic software development skills
Basic high school math, such as trigonometry and algebra
Description
Are you a developer interested in building machine learning and deep learning models? Do you want to be proficient in the rapidly growing field of artificial intelligence? One of the fastest and easiest ways to learn these skills is by working through practical hands-on examples.
LinkedIn released it's annual "Emerging Jobs" list, which ranks the fastest growing job categories. The top role is Artificial Intelligence Specialist, which is any role related to machine learning. Hiring for this role has grown 74% in the past few years!
In this course, you will work through several practical, machine learning examples, such as image recognition, sentiment analysis, fraud detection, and more. In the process, you will learn how to use modern frameworks, such as Tensorflow 2/Keras, NumPy, Pandas, and Matplotlib. You will also learn how use powerful and free development environments in the cloud, like Google Colab.
Each example is independent and follows a consistent structure, so you can work through examples in any order.  In each example, you will learn:
The nature of the problem
How to analyze and visualize data
How to choose a suitable model
How to prepare data for training and testing
How to build, test, and improve a machine learning model
Answers to common questions
What to do next
Of course, there are some required foundations you will need for each example. Foundation sections are presented as needed. You can learn what interests you, in the order you want to learn it, on your own schedule.
Why choose me as your instructor?
Practical experience. I actively develop real world machine learning systems. I bring that experience to each course.
Teaching experience. I've been writing and teaching for over 20 years.
Commitment to quality. I am constantly updating my courses with improvements and new material.
Ongoing support. Ask me anything! I'm here to help. I answer every question or concern promptly.
Selected Reviews
clear explanations..to the point and no jargon..neat presentation of notebooks with codes..it's a step by step guide on creating machine learning models using Google colab..the models explained here are basic and thus perfect for beginners ,to understand how machine learning models are created based on the given problem and about techniques used to improve the accuracy..with the resources shared and Mr.Madhu's immediate response to messages/QA,one can learn more about a topic..highly recommended to all machine learning enthusiasts.  - Ashraf UI
The cours is easy to understand and well presented, same thing for the practical examples Using google colab was a very good idea to present the course and to do the exercices , we can easily test a function or a line of code. The last three sections are very intresting, they are practical exercices for deep learning well presented and commented - Iheb GANDOUZ
The way it is explained is really cool. I used to be bored after an hour during lectures, but the guide somehow makes it very interesting.... - Anu Priya J
January 2020 updates:
New mathematics and machine learning foundation section including
Logistic regression, loss and cost functions, gradient descent, and backpropagation
All examples updated to use Tensorflow 2 (Tensorflow 1 examples are available also)
Jupyter note introduction
Python quick start
Basic linear algebra
March 2020 updates:
A sentiment and natural language processing section
This includes a modern BERT classification model with surprisingly high accuracy
April/May 2020 updates:
Numerous assignment improvements, e.g. self-paced or guided approach
Add lectures on Google Colab, Python quick start, classify your own images and more!

100% Off Udemy Coupon . Free Udemy Courses . Online Classes
Comment Policy:
-->